Автоматичне налаштування рамкової магнітної антени
Додано: Суб жовтня 08, 2022 9:21 am
				
				
 Рамкова магнітна антена — це, по суті, просто резонансний контур, у якому використовується індуктор великого розміру та  регульований конденсатор . Якщо окружність котушки індуктивності набагато менше, ніж, скажімо, 1/10 довжини хвилі, то ефективність антени постраждає. Якщо окружність індуктора наближається до ¼ довжини хвилі або більше, тоді антену точніше характеризувати як рамкову електричну антену з характеристиками, подібними до характеристик диполя.  Ефективна рамкова магнітна антена має дуже високу добротність. Іншими словами, антена має дуже вузьку смугу пропускання, якщо ви переміщуєтеся на кілька кГц, вам потрібно переналаштувати антену. Це швидко стає дуже неприємним, особливо якщо ви, як і я, любите налаштовувати діапазони вгору та вниз, щоб побачити, що відбувається.
Контролер магнітної петлі налаштовує антену в режимі реального часу, відстежуючи кожен рух трансивера VFO. Іншими словами, на відміну від інших контролерів магнітної передавальної рамкової антени, немає необхідності передавати та повторно налаштовувати на мінімальний КСВ щоразу, коли змінюється частота.Контролер отримує інформацію про частоту від трансивера і відповідно обчислює відповідне положення конденсатора. Початкове програмування контролера - це проста операція налаштування та збереження, одна позиція на 50 або 100 кГц. Можна зберегти 200 попередніх налаштувань пам'яті, але на практиці потрібно набагато менше. Контролер лінійно налаштовується між збереженими пресетами.Контролер може спілкуватися з такими радіостанціями:
Типовий кроковий двигун дає роздільну здатність 1,8 градусів на крок. Кожен крок можна розділити на 8 мікрокроків, отже двигун 1,8 град/крок забезпечить 1600 різних позицій на кожен повний оберт. Іншими словами, контролер може відстежувати пару частота/позиція з точністю до 1600 кроків за оберт у діапазоні сотень обертів. Це більш ніж достатня роздільна здатність для налаштування багатовиткового вакуумного конденсатора змінної ємності. Якщо ви використовуєте конденсатор типу «метелик» або подібний повітряний змінний конденсатор, то вам, ймовірно, знадобиться принаймні 5 до 1 редуктор, щоб отримати достатню роздільну здатність позиціонування конденсатора.
Схема крокового контролера, яка використовується в цьому проекті, здатна управляти до 1,5 А на фазу. Мікрокроки досягаються шляхом подачі струму в обидві фази одночасно, але в різних пропорціях для кожного мікрокроку. Іншими словами, схема контролера крокового двигуна забезпечує точне обмеження струму. Цю функцію обмеження струму також можна використовувати для налаштування мінімального крутного моменту, необхідного для надійного обертання конденсатора, таким чином гарантуючи відсутність пошкоджень, якщо ми випадково спробуємо вийти за крайні упори.
Ось зображення конденсаторного приладу. Вакуумний конденсатор Дженнінгса 5 – 465 пФ, визначений на 5 кВ, встановлений на основі з оргскла. Зірочка, яка кріпиться на валу конденсатора, не використовується.
 
 
 
 
Якщо кінцеві вимикачі не будуть використовуватися, то немає потреби в D2, D3, R25, R26, C19-C22 і T3.U1 — це Teensy 3.1 або Teensy 3.2, майже клон Arduino (32-розрядний процесор ARM Cortex M4, що працює на частоті 96 МГц)Примітка. Зазвичай Teensy 3.1/3.2 живиться через порт USB. Однак у цьому проекті він живиться від стабілізатора напруги LM7805 (U4). Щоб мати можливість підключити порт USB до комп’ютера, нам потрібно від’єднати подачу напруги від кабелю USB. Це робиться шляхом вирізання вузької лінії, що відокремлює V_in від V_usb,U2 і U3 — це контролери крокових двигунів Allegro A4975, доступні на www.digikey.com (Digikey 620-1435-5-ND) .(Останніша версія, описана в «Інструкціях щодо специфікації та збірки» внизу веб-сторінки, використовує контролери крокового двигуна DRV8825 або A4988 замість A4975).Я використовую оптичний кодер 128 ppr (прикріплений до великої чорної ручки на передній панелі, див. Малюнок 1), оптичний кодер 64 ppr із вбудованою кнопкою ( Digikey EM14A0D-C24-L064S-ND) для перемикача Menu/Enact ( SW1) також може бути хорошим вибором.Три дроселі загального режиму необхідні для пригнічення радіочастот, що приймаються від антени кабелем керування кроковим двигуном, потенційно блокуючи контролер. І навпаки, вони також гарантують, що контролер не випромінює RFI в антену. Дроселі 2х 51 мкГ синфазного типу, поверхневий монтаж (в прототипі вони встановлені на нижній стороні друкованої плати). Можна також використовувати феритові сердечники FT37-43, 2x 10 або більше витків, біфілярне намотування.RV1 використовується для регулювання контрастності РК-дисплея. RV2 використовується для регулювання крутного моменту крокового двигуна. Разом з RV2, R2 і R3 при 0,22 Ом і R6 при 2200 Ом забезпечують регулювання струму від 0 до 1,4 А, що дозволяє використовувати крокові двигуни, визначені до 2 А на фазу.З’єднання задньої плати, з’єднання крокового двигуна та радіоз’єднання:
Верхня схема на малюнку 7 вище показує один можливий спосіб підключення контролера до крокового двигуна (і кінцевих вимикачів, якщо вони використовуються) через роз’єм DB9 на задній панелі контролера.Середня схема показує роз’єм живлення. Нижня діаграма на малюнку 7 показує послідовне з’єднання з об’єднавчою платою та кілька версій послідовного кабелю для різних типів радіостанцій, з якими контролер може спілкуватися. Під час підключення до Kenwood або Yaesu RS232 не забудьте з’єднати разом контакти 7 і 8 на роз’ємі RS232. Зауважте, що контролер не виводить відповідні рівні RS232, однак це не повинно викликати жодних проблем, якщо послідовний кабель не дуже довгий. Якщо потрібні відповідні рівні RS232, то найпростішим способом є використання схеми перетворювача MAX232. Немає необхідності створювати його, ці схеми можна придбати приблизно за три долари на eBay.Порт USB використовується для завантаження оновлень мікропрограми. Він також використовується як другий послідовний порт, що забезпечує такі функції, як збереження та виклик даних налаштування. USB-порт також можна налаштувати на послідовний порт <==>прохідний режим USB-порту, що дозволяє комп’ютерно керувати трансивером.Оригінальна друкована плата для контролера, як показано на малюнку 2, є односторонньою справою для домашнього пива. Червоні сліди на рентгенівському зображенні нижче показують дротові перемички. Будь ласка, зверніться до нижньої частини цієї веб-сторінки , щоб завантажити файли PDF, які можна використовувати як маску для травлення. Два файли, один звичайний, інший дзеркальний. Опція: автоматичне налаштування для найкращого КСВІнші подібні проекти контролерів були зосереджені на автоналаштуванні на основі КСВ. Це вимагає «Передавати для налаштування» кожного разу, коли змінюється частота. Цей контролер, зчитуючи інформацію про частоту з трансивера - і зберігаючи характеристики антени в пам'яті - автоматично переналаштує антену без необхідності передачі.
 
Іншими словами, насправді немає потреби в автоналаштуванні на основі КСВ.
Зважаючи на це, остання версія контролера тепер також може виконувати автоматичне налаштування SWR . Це спрощує початкове калібрування/зберігання пам’яті частоти+положення та корисно для повторного калібрування одним клацанням миші. Це також полегшує використання цього контролера з трансиверами, які не можуть надати інформацію про частоту. Ця опція також реалізує вимірювач потужності/КСВ із подвійною гістограмою, подібний до описаного тут (зазвичай не реалізує схему логарифмічного підсилювача AD8307, однак ця опція також підтримується мікропрограмою).
Насправді дивовижно спостерігати за роботою автонастроювання КСВ, воно блискавично швидко, займає кілька секунд або менше. Повний опис функції SWR Autotune можна знайти у файлі AutomaticMagneticLoopController_presentation_XXXXXX.pdf внизу цієї веб-сторінки.
Ось кілька фотографій контролера з доданими параметрами вимірювання потужності/КСВ і автоналаштування КСВ:
 
 
			Контролер магнітної петлі налаштовує антену в режимі реального часу, відстежуючи кожен рух трансивера VFO. Іншими словами, на відміну від інших контролерів магнітної передавальної рамкової антени, немає необхідності передавати та повторно налаштовувати на мінімальний КСВ щоразу, коли змінюється частота.Контролер отримує інформацію про частоту від трансивера і відповідно обчислює відповідне положення конденсатора. Початкове програмування контролера - це проста операція налаштування та збереження, одна позиція на 50 або 100 кГц. Можна зберегти 200 попередніх налаштувань пам'яті, але на практиці потрібно набагато менше. Контролер лінійно налаштовується між збереженими пресетами.Контролер може спілкуватися з такими радіостанціями:
- Elecraft K3 / KX3
 - ICOM CI-V (усі відносно нові КХ трансивери ICOM)
 - Kenwood TS-440, TS-450
 - Kenwood TS-870 (ще не перевірено)
 - Kenwood TS-480, TS-590, TS-2000
 - Yaesu FT-100, FT-100D
 - Yaesu FT747GX (ще не перевірено)
 - Yaesu FT-817, FT-847, FT-857, FT-897
 - Yaesu FT-920 (ще не перевірено)
 - Yaesu FT-990
 - Yaesu FT-1000MP (ще не перевірено)
 - Yaesu FT-1000MP MkV
 - Yaesu FT-450, FT-950, FTdx1200, FT-2000, FT-2000D, FTdx3000, FTdx5000...
 - TenTec Argo V, Argo VI, Eagle, Omni VII... (вони ще не тестувалися)
 - Псевдо VFO (використовується з не послідовними радіостанціями)
 
Типовий кроковий двигун дає роздільну здатність 1,8 градусів на крок. Кожен крок можна розділити на 8 мікрокроків, отже двигун 1,8 град/крок забезпечить 1600 різних позицій на кожен повний оберт. Іншими словами, контролер може відстежувати пару частота/позиція з точністю до 1600 кроків за оберт у діапазоні сотень обертів. Це більш ніж достатня роздільна здатність для налаштування багатовиткового вакуумного конденсатора змінної ємності. Якщо ви використовуєте конденсатор типу «метелик» або подібний повітряний змінний конденсатор, то вам, ймовірно, знадобиться принаймні 5 до 1 редуктор, щоб отримати достатню роздільну здатність позиціонування конденсатора.
Схема крокового контролера, яка використовується в цьому проекті, здатна управляти до 1,5 А на фазу. Мікрокроки досягаються шляхом подачі струму в обидві фази одночасно, але в різних пропорціях для кожного мікрокроку. Іншими словами, схема контролера крокового двигуна забезпечує точне обмеження струму. Цю функцію обмеження струму також можна використовувати для налаштування мінімального крутного моменту, необхідного для надійного обертання конденсатора, таким чином гарантуючи відсутність пошкоджень, якщо ми випадково спробуємо вийти за крайні упори.
Ось зображення конденсаторного приладу. Вакуумний конденсатор Дженнінгса 5 – 465 пФ, визначений на 5 кВ, встановлений на основі з оргскла. Зірочка, яка кріпиться на валу конденсатора, не використовується.
Якщо кінцеві вимикачі не будуть використовуватися, то немає потреби в D2, D3, R25, R26, C19-C22 і T3.U1 — це Teensy 3.1 або Teensy 3.2, майже клон Arduino (32-розрядний процесор ARM Cortex M4, що працює на частоті 96 МГц)Примітка. Зазвичай Teensy 3.1/3.2 живиться через порт USB. Однак у цьому проекті він живиться від стабілізатора напруги LM7805 (U4). Щоб мати можливість підключити порт USB до комп’ютера, нам потрібно від’єднати подачу напруги від кабелю USB. Це робиться шляхом вирізання вузької лінії, що відокремлює V_in від V_usb,U2 і U3 — це контролери крокових двигунів Allegro A4975, доступні на www.digikey.com (Digikey 620-1435-5-ND) .(Останніша версія, описана в «Інструкціях щодо специфікації та збірки» внизу веб-сторінки, використовує контролери крокового двигуна DRV8825 або A4988 замість A4975).Я використовую оптичний кодер 128 ppr (прикріплений до великої чорної ручки на передній панелі, див. Малюнок 1), оптичний кодер 64 ppr із вбудованою кнопкою ( Digikey EM14A0D-C24-L064S-ND) для перемикача Menu/Enact ( SW1) також може бути хорошим вибором.Три дроселі загального режиму необхідні для пригнічення радіочастот, що приймаються від антени кабелем керування кроковим двигуном, потенційно блокуючи контролер. І навпаки, вони також гарантують, що контролер не випромінює RFI в антену. Дроселі 2х 51 мкГ синфазного типу, поверхневий монтаж (в прототипі вони встановлені на нижній стороні друкованої плати). Можна також використовувати феритові сердечники FT37-43, 2x 10 або більше витків, біфілярне намотування.RV1 використовується для регулювання контрастності РК-дисплея. RV2 використовується для регулювання крутного моменту крокового двигуна. Разом з RV2, R2 і R3 при 0,22 Ом і R6 при 2200 Ом забезпечують регулювання струму від 0 до 1,4 А, що дозволяє використовувати крокові двигуни, визначені до 2 А на фазу.З’єднання задньої плати, з’єднання крокового двигуна та радіоз’єднання:
Верхня схема на малюнку 7 вище показує один можливий спосіб підключення контролера до крокового двигуна (і кінцевих вимикачів, якщо вони використовуються) через роз’єм DB9 на задній панелі контролера.Середня схема показує роз’єм живлення. Нижня діаграма на малюнку 7 показує послідовне з’єднання з об’єднавчою платою та кілька версій послідовного кабелю для різних типів радіостанцій, з якими контролер може спілкуватися. Під час підключення до Kenwood або Yaesu RS232 не забудьте з’єднати разом контакти 7 і 8 на роз’ємі RS232. Зауважте, що контролер не виводить відповідні рівні RS232, однак це не повинно викликати жодних проблем, якщо послідовний кабель не дуже довгий. Якщо потрібні відповідні рівні RS232, то найпростішим способом є використання схеми перетворювача MAX232. Немає необхідності створювати його, ці схеми можна придбати приблизно за три долари на eBay.Порт USB використовується для завантаження оновлень мікропрограми. Він також використовується як другий послідовний порт, що забезпечує такі функції, як збереження та виклик даних налаштування. USB-порт також можна налаштувати на послідовний порт <==>прохідний режим USB-порту, що дозволяє комп’ютерно керувати трансивером.Оригінальна друкована плата для контролера, як показано на малюнку 2, є односторонньою справою для домашнього пива. Червоні сліди на рентгенівському зображенні нижче показують дротові перемички. Будь ласка, зверніться до нижньої частини цієї веб-сторінки , щоб завантажити файли PDF, які можна використовувати як маску для травлення. Два файли, один звичайний, інший дзеркальний. Опція: автоматичне налаштування для найкращого КСВІнші подібні проекти контролерів були зосереджені на автоналаштуванні на основі КСВ. Це вимагає «Передавати для налаштування» кожного разу, коли змінюється частота. Цей контролер, зчитуючи інформацію про частоту з трансивера - і зберігаючи характеристики антени в пам'яті - автоматично переналаштує антену без необхідності передачі.
Іншими словами, насправді немає потреби в автоналаштуванні на основі КСВ.
Зважаючи на це, остання версія контролера тепер також може виконувати автоматичне налаштування SWR . Це спрощує початкове калібрування/зберігання пам’яті частоти+положення та корисно для повторного калібрування одним клацанням миші. Це також полегшує використання цього контролера з трансиверами, які не можуть надати інформацію про частоту. Ця опція також реалізує вимірювач потужності/КСВ із подвійною гістограмою, подібний до описаного тут (зазвичай не реалізує схему логарифмічного підсилювача AD8307, однак ця опція також підтримується мікропрограмою).
Насправді дивовижно спостерігати за роботою автонастроювання КСВ, воно блискавично швидко, займає кілька секунд або менше. Повний опис функції SWR Autotune можна знайти у файлі AutomaticMagneticLoopController_presentation_XXXXXX.pdf внизу цієї веб-сторінки.
Ось кілька фотографій контролера з доданими параметрами вимірювання потужності/КСВ і автоналаштування КСВ:




